Baryon χ PT and connection to LQCD A topical example: The nucleon sigma terms

J. Martin Camalich

University of Sussex, UK

Chiral Dynamics '12 @ Jefferson Lab

August 9, 2012

Why the nucleon sigma-terms?

• Constrain BSM parameter $\alpha_{s-i} \mapsto$ The nucleon sigma terms

$$\sigma_q = m_q \langle N | \bar{q}q | N \rangle$$
 at $t = 0$

Largest uncertainty in constraints from DM-nucleon cross sections Ellis *et al.*'08

- An important property also in nuclear physics!
 - Origin of ordinary matter mass (Strangeness puzzle)
 - lt is important to understand χ -symmetry restoration in nuclear matter Finelli *et al.*'04, Lacour *et al.*'10

Why the nucleon sigma-terms?

• Constrain BSM parameter $\alpha_{s-i} \mapsto$ The nucleon sigma terms

$$\sigma_q = m_q \langle N | \bar{q}q | N \rangle$$
 at $t = 0$

Largest uncertainty in constraints from DM-nucleon cross sections Ellis *et al.*'08

- An important property also in nuclear physics!
 - Origin of ordinary matter mass (Strangeness puzzle)
 - It is important to understand χ-symmetry restoration in nuclear matter Finelli *et al.*'04, Lacour *et al.*'10

We customarily define the pion-nucleon sigma term as

$$\sigma_{\pi N} = \sigma_u + \sigma_d$$

and the strange sigma term as σ_s

- Experimental determination:
 - ► Chiral Ward Identities in πN scattering relating D^+ amplitude and $\sigma_{\pi N}$ Cheng&Dashen'71
 - σ_s can be obtained using the baryon mass splittings and $\sigma_{\pi N}$ Cheng'76
- LQCD determinations:

• Using the $M_B(m_q)$ and the Hellmann-Feynman theorem

$$\sigma_{\pi B} = m_{u,d} \frac{\partial M_B}{\partial m_{u,d}} \qquad , \qquad \sigma_{sB} = m_s \frac{\partial M_B}{\partial m_s} \tag{1}$$

Procura et al.'04, Walker-Loud et al.'09

 Calculating directly the scalar three-point function (disconnected diagrams) Bali *et al.*'11 We customarily define the pion-nucleon sigma term as

$$\sigma_{\pi N} = \sigma_{u} + \sigma_{d}$$

and the strange sigma term as σ_s

- Experimental determination:
 - ► Chiral Ward Identities in πN scattering relating D^+ amplitude and $\sigma_{\pi N}$ Cheng&Dashen'71
 - σ_s can be obtained using the baryon mass splittings and $\sigma_{\pi N}$ Cheng'76

LQCD determinations:

• Using the $M_B(m_q)$ and the Hellmann-Feynman theorem

$$\sigma_{\pi B} = m_{u,d} \frac{\partial M_B}{\partial m_{u,d}} \qquad , \qquad \sigma_{sB} = m_s \frac{\partial M_B}{\partial m_s} \tag{1}$$

Procura et al.'04, Walker-Loud et al.'09

 Calculating directly the scalar three-point function (disconnected diagrams) Bali et al.'11

OUTLINE

3

Chiral perturbation theory for baryons

- Baryon χ PT: The power counting problem
- The role of the decuplet resonances

- LQCD determination of the sigma terms
- On the strangeness content of the nucleon

Leading chiral Lagrangian for baryons

$$egin{aligned} \mathcal{L}_{\phi B}^{(1)} &= \langle ar{B}(im{D}-m_B) \, B
angle + rac{D/F}{2} \langle ar{B} \gamma^\mu \gamma_5 \left(u_\mu, B
ight)_\pm
angle \ B &= \left(egin{aligned} rac{\Sigma^0}{\sqrt{2}} + rac{\Lambda}{\sqrt{6}} & \Sigma^+ & p \ \Sigma^- & -rac{\Sigma^0}{\sqrt{2}} + rac{\Lambda}{\sqrt{6}} & n \ \Xi^- & \Xi^0 & -rac{2\Lambda}{\sqrt{6}} \end{array}
ight) \end{aligned}$$

For SU(2) the Lagrangian is

$$\mathcal{L}_{\pi N}^{(1)} = \bar{N}(i\partial - m_N)N + \frac{g_A}{2}\bar{N}\gamma^{\mu}\gamma_5 \overrightarrow{\tau} \cdot \left(\frac{i}{f_{\pi}}\partial_{\mu}\overrightarrow{\pi} + 2\overrightarrow{a}_{\mu}\right)N - \frac{1}{4f_{\pi}^2}\bar{N}\gamma^{\mu}\overrightarrow{\tau}N \cdot \pi \times \partial_{\mu}\pi + \mathcal{O}(\pi^3)$$

- Contains the so-called *low-energy theorems*
 - Goldberger-Treiman relation: $f_{\pi}g_{\pi NN} = m_N g_A$ '58
 - Weinberg-Tomozawa interaction '66
 - Kroll-Ruderman photoproduction term '54

Baryon χ PT and power counting

Naïve power counting formula for (non-relativistic) baryons (Weinberg '92)

$$D = 4L - 2N_M - N_B + \sum_k kV_k$$

In a Lorentz-covariant formulation loops break PC!

- ▶ Baryon mass *m*₀: New large scale that does not vanish in the chiral limit
- Diagrams with arbitrarily large number of loops contribute to lower orders (Gasser et al.'88)

J. Martin Camalich @ CDs'12 (JLab)

Heavy Baryon χ PT

 $\boldsymbol{k}_{\mathrm{n}}$

 $\frac{\not p+m}{(p+k)^2-m^2} = \frac{1+\not v}{2\nu\cdot k} + \mathcal{O}(1/m), \quad \text{ relevant for } \nu\cdot k << \Lambda_{\chi SB}$

• Heavy Baryon χ PT Jenkins & Manohar'91:

"Exploit $M \sim \Lambda_{\chi SB}$ to integrate out the heavy components of the spinor fields and construct a heavy-field EFT from the outset"

$$\mathcal{L}_{ ext{HB}}^{(1)} = \langle ar{B}_{m{v}} \left(m{v}\cdot m{D}
ight) m{B}_{m{v}}
angle + m{D}/m{F} \langle ar{B}_{m{v}} m{S}_{m{v}}^{\mu} \left(m{u}_{\mu}, m{B}_{m{v}}
ight)_{\pm}
angle$$

- Neat power counting structure
- Many applications and some up to 2-loop level McGovern et al.'98

"The heavy-field theory has not the same analytic structure as a theory with dynamical nucleons: This may cause problematic convergence in some parts of the low-energy region"

Example: Born term (*s*-channel) in πN scattering:

$$\begin{array}{c} q \\ p \\ p \end{array} \longrightarrow \begin{array}{c} 1 \\ 2m_N \frac{1}{\left(v \cdot q + \frac{M_{\pi}^2}{2m_N}\right)} \sim \frac{1}{2m_N} \frac{1}{v \cdot q} \end{array}$$

- The Born Term in HB **does not** have the nucleon pole at $s = m_N^2$
- Poor convergence of scalar and isovector form factors Bernard *et al.*'95, Becher *et al.*'99
- Might be related to problematic convergence for $M_{\phi} \gtrsim 300 \text{ MeV}$
 - LQCD extrapolations Holstein et al.'05
 - SU(3)_F theory Geng&JMC'08

Beyond HB χ PT: Covariant B χ PT

 $B_{\chi}PT$ incorporates the *right* analytic structure of the baryon propagators

• Obscures the power counting:

- Includes infinite recoil 1/m corrections
- Loops violate the power counting
- PC problem traded by a renormalization prescription issue "The leading infrared divergent (non-analytical) behavior of the baryonic loops obeys the PC formula and agrees with the one given by HB" Becher&Leutwyler'99, Gegelia&Japaridze'99

Extended on mass shell scheme (EOMS)

"Use a d-regularization scheme in which the **finite part** of the bare LECs is adjusted to cancel the PC terms" Gegelia&Japaridze'99,Fuchs *et al.*'99

Beyond HB χ PT: Covariant B χ PT

$B\chi$ PT incorporates the *right* analytic structure of the baryon propagators

• Obscures the power counting:

- Includes infinite recoil 1/m corrections
- Loops violate the power counting

PC problem traded by a renormalization prescription issue "The leading infrared divergent (non-analytical) behavior of the baryonic loops obeys the PC formula and agrees with the one given by HB" Becher&Leutwyler'99, Gegelia&Japaridze'99

Extended on mass shell scheme (EOMS)

"Use a d-regularization scheme in which the **finite part** of the bare LECs is adjusted to cancel the PC terms" Gegelia&Japaridze'99,Fuchs *et al.*'99

Beyond HB χ PT: Covariant B χ PT

$B\chi$ PT incorporates the *right* analytic structure of the baryon propagators

• Obscures the power counting:

- ► Includes infinite recoil 1/*m* corrections
- Loops violate the power counting

• PC problem traded by a renormalization prescription issue

"The leading infrared divergent (non-analytical) behavior of the baryonic loops obeys the PC formula and agrees with the one given by HB" Becher&Leutwyler'99, Gegelia&Japaridze'99

Extended on mass shell scheme (EOMS)

"Use a d-regularization scheme in which the **finite part** of the bare LECs is adjusted to cancel the PC terms" Gegelia&Japaridze'99,Fuchs *et al.*'99

In B_{\chi}PT the resonances are short-range effects included in the LECs

Expansion in powers of p/δ where $\delta = m_R - m_N$

- In the πN sector, the $\Delta(1232)$ is close to the ground state **Example:** In πN scattering the threshold is at $\delta W \sim M_{\pi}$!
- In $SU(3)_F$ theory $m_K/\Lambda_{\chi SB} \sim 0.5$ that is well above $\delta/\Lambda_{\chi SB} \sim 0.3$
- Include the decuplet resonances as Rarita-Schwinger fields!

 $\mathcal{L}_{T}^{f} = \bar{T}_{\mu}^{abc} (i \gamma^{\mu\nu\alpha} D_{\alpha} - M_{D0} \gamma^{\mu\nu}) T_{\nu}^{abc}$

 $+\frac{i c}{M_{C0}} \left(\varepsilon^{abc} \left(\mathcal{D}_{\rho} \bar{T}_{\mu}^{ade} \right) \gamma^{\rho \mu \nu} (u_{\nu})^{d}_{b} B^{e}_{c} + \text{h.c.} \right) + \frac{i \mathcal{H}}{M_{C0}} \bar{T}_{\mu}^{abc} \gamma^{\mu \nu \rho \sigma} \gamma_{5} (u_{\sigma})^{c}_{d} \left(\mathcal{D}_{\rho} T^{abd}_{\nu} \right)$

New couplings $\mathcal C$ and $\mathcal H$ fixed with decay rates

In B_{\chi}PT the resonances are short-range effects included in the LECs

Expansion in powers of p/δ where $\delta = m_R - m_N$

- In the πN sector, the Δ(1232) is close to the ground state
 Example: In πN scattering the threshold is at δW ~ M_π!
- In $SU(3)_F$ theory $m_K/\Lambda_{\chi SB} \sim 0.5$ that is well above $\delta/\Lambda_{\chi SB} \sim 0.3$

Include the decuplet resonances as Rarita-Schwinger fields!

 $\mathcal{L}_{T}^{f} = \bar{T}_{\mu}^{abc} (i \gamma^{\mu\nu\alpha} D_{\alpha} - M_{D0} \gamma^{\mu\nu}) T_{\nu}^{abc}$

 $+\frac{i c}{M_{D0}} \left(\varepsilon^{abc} \left(\mathcal{D}_{\rho} \bar{T}_{\mu}^{ade} \right) \gamma^{\rho \mu \nu} (u_{\nu})^{d}_{b} B^{e}_{c} + \text{h.c.} \right) + \frac{i \mathcal{H}}{M_{D0}} \bar{T}_{\mu}^{abc} \gamma^{\mu \nu \rho \sigma} \gamma_{5} (u_{\sigma})^{c}_{d} \left(\mathcal{D}_{\rho} T^{abd}_{\nu} \right)$

New couplings \mathcal{C} and \mathcal{H} fixed with decay rates

In B_{\chi}PT the resonances are short-range effects included in the LECs

Expansion in powers of p/δ where $\delta = m_R - m_N$

- In the πN sector, the $\Delta(1232)$ is close to the ground state **Example:** In πN scattering the threshold is at $\delta W \sim M_{\pi}$!
- In $SU(3)_F$ theory $m_K/\Lambda_{\chi SB} \sim 0.5$ that is well above $\delta/\Lambda_{\chi SB} \sim 0.3$

Include the decuplet resonances as Rarita-Schwinger fields!

 $\mathcal{L}_{\tau}^{f} = \overline{T}_{\mu}^{abc} (i \gamma^{\mu \nu \alpha} D_{\alpha} - M_{D0} \gamma^{\mu \nu}) T_{\mu}^{ab}$

 $+\frac{i\mathcal{C}}{M_{DO}}\left(\varepsilon^{abc}\left(\mathcal{D}_{\rho}\bar{T}_{\mu}^{ade}\right)\gamma^{\rho\mu\nu}\left(\mathcal{U}_{\nu}\right)_{b}^{d}B_{c}^{e}+\text{h.c.}\right)+\frac{i\mathcal{H}}{M_{DO}}\bar{T}_{\mu}^{abc}\gamma^{\mu\nu\rho\sigma}\gamma_{5}\left(\mathcal{U}_{\sigma}\right)_{d}^{c}\left(\mathcal{D}_{\rho}T_{\nu}^{abd}\right)$

New couplings \mathcal{C} and \mathcal{H} fixed with decay rates

In B_{\chi}PT the resonances are short-range effects included in the LECs

Expansion in powers of p/δ where $\delta = m_R - m_N$

- In the πN sector, the Δ(1232) is close to the ground state
 Example: In πN scattering the threshold is at δW ~ M_π!
- In SU(3)_F theory m_K/Λ_{χSB} ~ 0.5 that is well above δ/Λ_{χSB} ~ 0.3
- Include the decuplet resonances as Rarita-Schwinger fields!

$$\mathcal{L}_{T}^{f} = \bar{T}_{\mu}^{abc} (i \gamma^{\mu\nu\alpha} D_{\alpha} - M_{D0} \gamma^{\mu\nu}) T_{\nu}^{abc}$$

$$+ \frac{iC}{M_{D0}} \Big(\varepsilon^{abc} \Big(\mathcal{D}_{\rho} \bar{T}_{\mu}^{ade} \Big) \gamma^{\rho\mu\nu} (u_{\nu})_{b}^{d} B_{c}^{e} + \text{h.c.} \Big) + \frac{i\mathcal{H}}{M_{D0}} \bar{T}_{\mu}^{abc} \gamma^{\mu\nu\rho\sigma} \gamma_{5} (u_{\sigma})_{d}^{c} \Big(\mathcal{D}_{\rho} \bar{T}_{\nu}^{abd} \Big)$$

New couplings ${\mathcal C}$ and ${\mathcal H}$ fixed with decay rates

Experimental determination of $\sigma_{\pi N}$

- The $\sigma_{\pi N}$ can be determined **experimentally** from πN scattering expts.!!
- However there still exist embarrassing discrepancies
 - ► Karlsruhe-Helsinki Group R. Koch NPA448,707 (1986) $\sigma_{\pi N} \simeq 45$ MeV Gasser *et al* '91
 - George-Washington Group R.A. Arndt *et al* PRC 74,045205 (2006) $\sigma_{\pi N} \simeq 64(7)$ MeV Pavan *et al* '02
- GW Group includes high-precision data recorded in the last 20 yrs

Is the modern data-set really pointing to a large $\sigma_{\pi N}$? We have critically analyzed the experimental situation using **baryon chiral perturbation theory** Alarcón, JMC and Oller, Phys. Rev. D85, 051503 (2012)

Experimental $\sigma_{\pi N}$: The Cheng-Dashen point

Low-energy theorem of the chiral nature of the strong interactions (PCAC)

$$\Sigma_{\pi N} \equiv f_{\pi}^2 \bar{D}^+ (2m_{\pi}^2, M_N^2) = \sigma_{\pi N} (2m_{\pi}^2) + \Delta_R$$

Cheng&Dashen '71

- $\bar{D}^+(t,s)$ is the (Born-subtracted) isoscalar πN scattering amplitude
- ► Δ_R ~ O(p⁴) ~ 1 MeV
- $\sigma_{\pi N}(2m_{\pi}^2) = \sigma_{\pi N} + \Delta_{\sigma} \simeq \sigma_{\pi N} + 15$ MeV Gasser *et al* '91

• The Cheng-Dashen point lies in the unphysical region of the process $(t_{th} < 0, W_{th} = \sqrt{s_{th}} = M_N + m_{\pi})$ Talks by Ch. Ditsche and M. Hoferichter

Difficulties in the traditional extraction of $\sigma_{\pi N}$

(1) *t*-extrapolation affected by the $2-\pi$ threshold (2) It is hard to ascertain how uncertainties propagate onto the unphysical region

Experimental $\sigma_{\pi N}$: The Cheng-Dashen point

Low-energy theorem of the chiral nature of the strong interactions (PCAC)

$$\Sigma_{\pi N} \equiv f_{\pi}^2 \bar{D}^+ (2m_{\pi}^2, M_N^2) = \sigma_{\pi N} (2m_{\pi}^2) + \Delta_R$$

Cheng&Dashen '71

- $\bar{D}^+(t,s)$ is the (Born-subtracted) **isoscalar** πN scattering amplitude
- $\Delta_R \sim \mathcal{O}(p^4) \sim 1 \text{ MeV}$
- $\sigma_{\pi N}(2m_{\pi}^2) = \sigma_{\pi N} + \Delta_{\sigma} \simeq \sigma_{\pi N} + 15$ MeV Gasser *et al* '91
- The Cheng-Dashen point lies in the unphysical region of the process $(t_{th} < 0, W_{th} = \sqrt{s_{th}} = M_N + m_{\pi})$ Talks by Ch. Ditsche and M. Hoferichter

Difficulties in the traditional extraction of $\sigma_{\pi N}$

(1) *t*-extrapolation affected by the $2-\pi$ threshold

(2) It is hard to ascertain how uncertainties propagate onto the unphysical region

An alternative experimental extraction of $\sigma_{\pi N}$

• Non-linear implementation of χ -symmetry in χ PT

At LO

$$\sigma_{\pi N} = -4m_{\pi}^2 c_1 + \mathcal{O}(p^3)$$

• An alternative χ -way of extracting $\sigma_{\pi N}!$

Advantages

(1) Obtained *directly* from scattering data (extrapolation not needed)

(2) Theoretical uncertainties computable on EFT grounds: χ PT

Short briefing

- Scheme: Covariant B χ PT in the EOMS-scheme at $\mathcal{O}(p^3)$
 - ▶ **HB**: $\mathcal{O}(p^3)$ and $\mathcal{O}(p^4)$ calculations Fettes et al., H. Krebbs' talk
 - Covariant-Infrared: $\mathcal{O}(p^3)$ Torikoshi et al. and $\mathcal{O}(p^4)$ Becher et al.
- Δ Theory: New scale in the EFT δ = M_Δ − M_N ~ 300 MeV
 Method: δ-counting assigns a hierarchy at low energies δ ~ O(p^{1/2})
 Pascalutsa&Phillips '03

O(p)

O(p^{3/2})

- Expansion better organised but slower $\delta/\Lambda_{\chi SB} \sim 0.3$
- This counting should be valid only below the Δ(1232) resonance region!

Fitting: Insight

- We consider fits to hadronic phase shifts of the S- and P-waves
 - Karlsruhe-Helsinki (KH) Group
 KA85 solution R. Koch NPA448,707 (1986)
 - George-Washington University (GW) Group
 WI08 solution R.A. Arndt *et al* PRC 74,045205 (2006)
 - Evangelos Matsinos' (EM) Group
 E. Matsinos *et al* NPA 778, 95 (2006)
 - * Solution focused on the parametrization of data at very low-energies
 - * Early solution extrapolated to the Cheng-Dasheng point Olsson '00
- $\mathcal{O}(p^3)$ calculation in the δ -counting: Fit parameters
 - ▶ In the πN sector **9 LECs** ($\mathcal{O}(p)$: $g_A = 1.267$) $\mathcal{O}(p^2)$: $c_1, c_2, c_3, c_4; \mathcal{O}(p^3)$: $d_1 + d_2, d_3, d_5, d_{14} - d_{15}, d_{16}$
 - In the $\pi N \Delta$ sector **1 LEC**

 $\mathcal{O}(p^1)$: h_A (We could fix it with the $\Delta(1232)$ -width $h_A = 2.90(2)$)

We don't have ∆-loops at this order!!

Fitting: Insight

- We consider fits to hadronic phase shifts of the S- and P-waves
 - Karlsruhe-Helsinki (KH) Group
 KA85 solution R. Koch NPA448,707 (1986)
 - George-Washington University (GW) Group
 WI08 solution R.A. Arndt *et al* PRC 74,045205 (2006)
 - Evangelos Matsinos' (EM) Group
 E. Matsinos *et al* NPA 778, 95 (2006)
 - * Solution focused on the parametrization of data at very low-energies
 - * Early solution extrapolated to the Cheng-Dasheng point Olsson '00
- $\mathcal{O}(p^3)$ calculation in the δ -counting: Fit parameters
 - ▶ In the π*N* sector **9 LECs** ($\mathcal{O}(p)$: $g_A = 1.267$) $\mathcal{O}(p^2)$: c_1 , c_2 , c_3 , c_4 ; $\mathcal{O}(p^3)$: $d_1 + d_2$, d_3 , d_5 , $d_{14} - d_{15}$, d_{18}
 - In the $\pi N\Delta$ sector **1 LEC**

 $\mathcal{O}(p^1)$: h_A (We could fix it with the $\Delta(1232)$ -width $h_A = 2.90(2)$)

We don't have ∆-loops at this order!!

KH solution

• Bumps in the **KH**-solution raises the χ^2

J. Martin Camalich @ CDs'12 (JLab)

GW solution

• Description is accurate up to just below/entering the resonance region

J. Martin Camalich @ CDs'12 (JLab)

 $B_{\chi}PT$ and applications to LQCD

EM solution

Description is very accurate at very low energies

J. Martin Camalich @ CDs'12 (JLab)

 $B\chi PT$ and applications to LQCD

Determination of the $\mathcal{O}(p^2)$ LECs

	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3	<i>C</i> ₄
KH	-0.80(6)	1.12(13)	-2.96(15)	2.00(7)
GW	-1.00(4)	1.01(4)	-3.04(2)	2.02(1)
EM	-1.00(1)	0.58(3)	-2.51(4)	1.77(2)

LECs values in GeV-1

- Discrepancies among PWs analyses...
 - ... in c_1 between KH and GW/EM \rightarrow Differences in $\sigma_{\pi N}$!
 - In in c_{2−3} between EM and KH/GW→ Problem of EM with a⁻₀₊
- Effect of the △ on LECs estimated by Resonance Saturation Hypothesis Meissner *et al* '96,Becher&Leutwyler'99

Determination of the $\mathcal{O}(p^2)$ LECs

	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3	<i>C</i> ₄
KH	-0.80(6)	1.12(13)	-2.96(15)	2.00(7)
GW	-1.00(4)	1.01(4)	-3.04(2)	2.02(1)
EM	-1.00(1)	0.58(3)	-2.51(4)	1.77(2)

LECs values in GeV-1

- Discrepancies among PWs analyses...
 - ... in c_1 between **KH** and **GW/EM** \rightarrow Differences in $\sigma_{\pi N}$!
 - ▶ ... in c_{2-3} between **EM** and **KH/GW** → Problem of **EM** with a_{0+}^-
- Effect of the Δ on LECs estimated by Resonance Saturation Hypothesis Meissner *et al* '96,Becher&Leutwyler'99

	C_1^{Δ}	C_2^{Δ}	c_3^{Δ}	C_4^{Δ}
GW	0.54	2.91	-3.83	1.77
RSH	-0.04	1.93.8	$-3.8\ldots-3$	1.42.0

$\sigma_{\pi N}$: χ -formula and uncertainties

• The expression of $\sigma_{\pi N}$ in EOMS-B χ PT up to $\mathcal{O}(p^3)$

$$\sigma_{\pi N} = -4\mathbf{c_1} m_{\pi}^2 - \frac{3g_A^2 m_{\pi}^3}{16\pi^2 l_{\pi}^2 M_N} \left(\frac{3M_N^2 - m_{\pi}^2}{\sqrt{4M_N^2 - m_{\pi}^2}} \arccos \frac{m_{\pi}}{2M_N} + m_{\pi} \log \frac{m_{\pi}}{M_N} \right)$$

With this Eq. and the fitted values for c₁ we predict σ_{πN}
 We have systematic and theoretical uncertainties

Systematic

- We study the dispersion of $\sigma_{\pi N}$ varying 1.14 $\leq W_{max} \leq$ 1.2 GeV
- 3 PW analyses: (hopefully) allows to *disentangle* systematics of the particular parametrization from the effect of the data-set used

• Theoretical

• Truncation of the χ -expansion \Rightarrow Can be calculated on a EFT basis!!

$\sigma_{\pi N}$: χ -formula and uncertainties

• The expression of $\sigma_{\pi N}$ in EOMS-B χ PT up to $\mathcal{O}(p^3)$

$$\sigma_{\pi N} = -4\mathbf{c_1} m_{\pi}^2 - \frac{3g_A^2 m_{\pi}^3}{16\pi^2 l_{\pi}^2 M_N} \left(\frac{3M_N^2 - m_{\pi}^2}{\sqrt{4M_N^2 - m_{\pi}^2}} \arccos \frac{m_{\pi}}{2M_N} + m_{\pi} \log \frac{m_{\pi}}{M_N} \right)$$

With this Eq. and the fitted values for *c*₁ we predict σ_{πN}
 We have systematic and theoretical uncertainties

• Systematic

- ▶ We study the dispersion of $\sigma_{\pi N}$ varying 1.14 $\leq W_{max} \leq$ 1.2 GeV
- 3 PW analyses: (hopefully) allows to *disentangle* systematics of the particular parametrization from the effect of the data-set used

Theoretical

• Truncation of the χ -expansion \Rightarrow Can be calculated on a EFT basis!!

$\sigma_{\pi N}$: χ -formula and uncertainties

• The expression of $\sigma_{\pi N}$ in EOMS-B χ PT up to $\mathcal{O}(p^3)$

$$\sigma_{\pi N} = -4\mathbf{c_1} m_{\pi}^2 - \frac{3g_A^2 m_{\pi}^3}{16\pi^2 t_{\pi}^2 M_N} \left(\frac{3M_N^2 - m_{\pi}^2}{\sqrt{4M_N^2 - m_{\pi}^2}} \arccos \frac{m_{\pi}}{2M_N} + m_{\pi} \log \frac{m_{\pi}}{M_N} \right)$$

With this Eq. and the fitted values for c₁ we predict σ_{πN}
 We have systematic and theoretical uncertainties

• Systematic

- ▶ We study the dispersion of $\sigma_{\pi N}$ varying 1.14 \leq W_{max} \leq 1.2 GeV
- ► 3 PW analyses: (hopefully) allows to *disentangle* systematics of the particular parametrization from the effect of the **data-set** used

Theoretical

• Truncation of the χ -expansion \Rightarrow Can be calculated on a EFT basis!!

Theoretical uncertainty: $\mathcal{O}(p^{7/2})$

Correction with a △-propagator

- This correction is to be compared with -19 MeV at $\mathcal{O}(p^3)$
 - Convergence pattern?
- We can't include this correction explicitly!
 Graphs at O(p^{7/2}) have to be included in the πN scattering amplitude

Our theoretical uncertainty will be $\delta \sigma_{\pi N}^{\text{theo}} = 6 \text{ MeV}$

Convergence of the chiral expansion: $\mathcal{O}(p^4)$

- Unitarity corrections in the *t*-channel could spoil the χ -expansion of $\sigma_{\pi N}$
 - The next-subleading ones come at $\mathcal{O}(p^4)$ with insertions of the $\mathcal{O}(p^2)$ LECs

- Taking our values for c_{1-4} we obtain $\delta \sigma_{\pi N}^{(4)} = -2 \dots -4$ MeV (extra contribution from $\mathcal{O}(p^4)$ LECs estimated to be $|\delta \sigma_{\pi N}^{(4,\text{LECs})}| \sim 1$ MeV)
- Decomposition of contributions (**GW**)

LO	NLO	N ² LO	N ³ LO
78	-19	6	3(2)

The χ -expansion for $\sigma_{\pi N}$ seems to be convergent!

	EOMS-B χ PT $\mathcal{O}(p^3)$	Cheng-Dashen (Dispersive)
KH	43(5)	≃45 [1]
GW	59(4)	65(7) [2]
EM	59(2)	56(9) [3]

- Our results, within systematics, agree with dispersive values
- We ratify the discrepancy between KH and GW/EM analyses
- EM and GW agree!: They have different systematics but both include new and high quality data
- πN **phenomenology**: **GW** is consistent with independent expt. info h_A (Δ -width), Δ_{GT} (NN, π -atoms), a_{0+}^- (π -atoms) and ...
- ...also with the isoscalar scattering length a⁺₀₊ (π-atoms)

	EOMS-B χ PT $\mathcal{O}(p^3)$	Cheng-Dashen (Dispersive)
KH	43(5)	≃45 [1]
GW	59(4)	65(7) [2]
EM	59(2)	56(9) [3]

- Our results, within systematics, agree with dispersive values
- We ratify the discrepancy between KH and GW/EM analyses
- EM and GW agree!: They have different systematics but both include new and high quality data
- πN phenomenology: GW is consistent with independent expt. info h_A (Δ -width), Δ_{GT} (NN, π -atoms), a_{0+}^- (π -atoms) and ...
- ...also with the isoscalar scattering length a⁺₀₊ (π-atoms)

	EOMS-B χ PT $\mathcal{O}(p^3)$	Cheng-Dashen (Dispersive)
KH	43(5)	≃45 [1]
GW	59(4)	65(7) [2]
EM	59(2)	56(9) [3]

- Our results, within systematics, agree with dispersive values
- We ratify the discrepancy between KH and GW/EM analyses
- EM and GW agree!: They have different systematics but both include new and high quality data
- πN phenomenology: GW is consistent with independent expt. info h_A (Δ -width), Δ_{GT} (*NN*, π -atoms), a_{0+}^- (π -atoms) and ...
- ...also with the isoscalar scattering length a_{0+}^+ (π -atoms)

	EOMS-B χ PT $\mathcal{O}(p^3)$	Cheng-Dashen (Dispersive)
KH	43(5)	≃45 [1]
GW	59(4)	65(7) [2]
EM	59(2)	56(9) [3]

- Our results, within systematics, agree with dispersive values
- We ratify the discrepancy between KH and GW/EM analyses
- EM and GW agree!: They have different systematics but both include new and high quality data
- πN phenomenology: GW is consistent with independent expt. info h_A (Δ -width), Δ_{GT} (NN, π -atoms), a_{0+}^- (π -atoms) and ...
- ...also with the isoscalar scattering length a_{0+}^+ (π -atoms)

Value of $\sigma_{\pi N}$

- We take into account modern πN scattering data (GW and EM)
- We add in quadrature the systematic and theoretical errors

$$\sigma_{\pi N} = 59(7) \text{ MeV}$$

• If we were to include **KH** in the average we reduce $\sigma_{\pi N}$ by 2-3 MeV

If we use only the **KH** result we obtain $\sigma_{\pi N} = 43(8)$ MeV

The LQCD baryon spectrum & the nucleon sigma terms

• BMW Collab., Science (2008)

- $N_f = 2 + 1$ dynamical simulations
- Multiple lattice spacings
- Multiple Volumes
- Various strange quark masses
- Chiral regime $m_{PS} \ge 190 \text{ MeV}$
- Similar simulations have been reported by many other collaborations LHPC (2008), PACS-CS (2008,2009), HSC (2008), QCDSF (2010), ...
- These results anticipate the progress in the baryon sector!
- LQCD results report on M_B(m_q)
 Use the Hellmann-Feynman theorem and a good inter/extrapolator!
 JMC, Geng, Vicente-Vacas'10

• BMW Collab., Science (2008)

- $N_f = 2 + 1$ dynamical simulations
- Multiple lattice spacings
- Multiple Volumes
- Various strange quark masses
- Chiral regime $m_{PS} \ge 190 \text{ MeV}$
- Similar simulations have been reported by many other collaborations LHPC (2008), PACS-CS (2008,2009), HSC (2008), QCDSF (2010), ...
- These results anticipate the progress in the baryon sector!
- LQCD results report on *M_B(m_q)* Use the Hellmann-Feynman theorem and a good inter/extrapolator!
 JMC, Geng, Vicente-Vacas'10

Baryon masses in χ PT: Beyond Gell-Mann Okubo

At tree-level: LO contribution we have 4 LECs

 $\mathcal{L}_{\mathcal{B}}^{\text{c.t.}} = (-M_{\mathcal{B}0} + b_0 \langle \chi_+ \rangle) \langle \bar{\mathcal{B}} \mathcal{B} \rangle + b_{\mathcal{D}} \langle \bar{\mathcal{B}} \{\chi_+, \mathcal{B}\} \rangle + b_{\mathcal{F}} \langle \bar{\mathcal{B}}[\chi_+, \mathcal{B}] \rangle,$

 $\chi_+ \simeq 2B_0 \operatorname{diag}(m_l, m_l, m_s)$

Gell-Mann Okubo formula $3M_{\Lambda} + M_{\Sigma} - 2(M_N + M_{\Xi}) = 0$

The GMO formula works at a few % of accuracy!

Loops provide the NLO contribution and SU(3)-breaking beyond GMO

- Little room for improvement
- SU(3)_F-B_XPT is not a very converging theory

Baryon masses in χ PT: Beyond Gell-Mann Okubo

At tree-level: LO contribution we have 4 LECs

 $\mathcal{L}_{\mathcal{B}}^{\text{c.t.}} = (-M_{\mathcal{B}0} + b_0 \langle \chi_+ \rangle) \langle \bar{\mathcal{B}} \mathcal{B} \rangle + b_{\mathcal{D}} \langle \bar{\mathcal{B}} \{\chi_+, \mathcal{B}\} \rangle + b_{\mathcal{F}} \langle \bar{\mathcal{B}}[\chi_+, \mathcal{B}] \rangle,$

 $\chi_+ \simeq 2B_0 \operatorname{diag}(m_l, m_l, m_s)$

Gell-Mann Okubo formula

 $3M_{\Lambda}+M_{\Sigma}-2(M_N+M_{\Xi})=0$

The GMO formula works at a few % of accuracy!

Loops provide the NLO contribution and SU(3)-breaking beyond GMO

- Little room for improvement
- SU(3)_F-B_χPT is not a very converging theory

Low-lying baryon masses: Experimental data

	M _N	M_{\wedge}	M_{Σ}	M≘	M ^{eff} _{B0}	b_D	b _F
GMO	942(2)	1115(1)	1188(4)	1325(3)	1192(5)	0.060(4)	-0.213(2)
HB	939(2)	1116(1)	1195(4)	1315(3)	2422(5)	0.412(4)	-0.781(2)
Cov.	941(2)	1116(1)	1190(4)	1322(3)	1840(5)	0.199(4)	-0.530(2)
Expt.	940(2)	1116(1)	1193(5)	1318(4)		_	

 M_B in [MeV] and b's in [GeV⁻¹]

• LO and NLO in HB and Cov. approaches describe the splittings very well

- This is despite of the LARGE NLO loop-corrections (~hundreds MeV)
 - * The SU(3)_F-structure of the loops is not accidental, Jenkins et al.'10

• Fit of **3** parameters to **4** data points:

$$M_{B0}^{e\!f\!f} = M_{B0} - b_0(4m_K^2 + 2m_\pi^2),\,b_D,\,b_F$$

• (Hellmann-Feynmann theorem): Disentangle *b*₀ from *M*_{B0} to obtain the sigma terms !!

Low-lying baryon masses: Experimental data

	M _N	M_{\wedge}	M_{Σ}	M≘	M ^{eff} _{B0}	b_D	b _F
GMO	942(2)	1115(1)	1188(4)	1325(3)	1192(5)	0.060(4)	-0.213(2)
HB	939(2)	1116(1)	1195(4)	1315(3)	2422(5)	0.412(4)	-0.781(2)
Cov.	941(2)	1116(1)	1190(4)	1322(3)	1840(5)	0.199(4)	-0.530(2)
Expt.	940(2)	1116(1)	1193(5)	1318(4)		_	

 M_B in [MeV] and b's in [GeV⁻¹]

LO and NLO in HB and Cov. approaches describe the splittings very well

- This is despite of the LARGE NLO loop-corrections (~hundreds MeV)
 - The SU(3)_F-structure of the loops is not accidental, Jenkins et al.'10
- Fit of **3** parameters to **4** data points:

$$M_{B0}^{e\!f\!f} = M_{B0} - b_0(4m_{\!K}^2+2m_\pi^2),\,b_D,\,b_F$$

(Hellmann-Feynmann theorem):
 Disentangle b₀ from M_{B0} to obtain the sigma terms !!

Low-lying baryon masses: Experimental data

	M _N	M_{\wedge}	M_{Σ}	M≘	M ^{eff} _{B0}	b_D	b _F
GMO	942(2)	1115(1)	1188(4)	1325(3)	1192(5)	0.060(4)	-0.213(2)
HB	939(2)	1116(1)	1195(4)	1315(3)	2422(5)	0.412(4)	-0.781(2)
Cov.	941(2)	1116(1)	1190(4)	1322(3)	1840(5)	0.199(4)	-0.530(2)
Expt.	940(2)	1116(1)	1193(5)	1318(4)		_	

 M_B in [MeV] and *b*'s in [GeV⁻¹]

LO and NLO in HB and Cov. approaches describe the splittings very well
 This is despite of the LARGE NLO loop-corrections (~hundreds MeV)
 * The SU(3)_E-structure of the loops is not accidental. Jenkins *et al.*'10

• Fit of **3** parameters to **4** data points:

$$M_{B0}^{e\!f\!f} = M_{B0} - b_0(4m_{\!K}^2+2m_\pi^2),\,b_D,\,b_F$$

(Hellmann-Feynmann theorem):

Disentangle b_0 from M_{B0} to obtain the sigma terms !!

Goal: Extrapolate lattice results on the low-lying baryon masses

- Allows to disentangle the LECs b₀ and M_{B0}
 - Extraction of b_0 : **Prediction** of σ_{π} and σ_s terms
- Test covariant approach as a framework to interpret LQCD

LQCD calculation: PACS-CS (Aoki et al., PRD'08)

- Contains more points close to the χ -limit
- One of the results almost on the physical point $m_{\pi} = 156 \text{ MeV}$
- Allows extrapolation on the strange quark mass
- Complementary analysis: LHPC (Walker-Loud et al., PRD'08)
 - Extrapolation from $m_\pi \simeq 300 \text{ MeV}$
 - ▶ Hint on Universality

Goal: Extrapolate lattice results on the low-lying baryon masses

- Allows to disentangle the LECs b₀ and M_{B0}
 - Extraction of b_0 : **Prediction** of σ_{π} and σ_s terms
- Test covariant approach as a framework to interpret LQCD

LQCD calculation: PACS-CS (Aoki et al., PRD'08)

- Contains more points close to the χ -limit
- One of the results almost on the physical point $m_{\pi} = 156 \text{ MeV}$
- Allows extrapolation on the strange quark mass
- Complementary analysis: LHPC (Walker-Loud et al., PRD'08)
 - Extrapolation from $m_\pi \simeq 300 \text{ MeV}$
 - ▶ Hint on Universality

Goal: Extrapolate lattice results on the low-lying baryon masses

- Allows to disentangle the LECs b₀ and M_{B0}
 - Extraction of b_0 : **Prediction** of σ_{π} and σ_s terms
- Test covariant approach as a framework to interpret LQCD

LQCD calculation: PACS-CS (Aoki et al., PRD'08)

- Contains more points close to the χ -limit
- One of the results almost on the physical point $m_{\pi} = 156 \text{ MeV}$
- Allows extrapolation on the strange quark mass

Complementary analysis: LHPC (Walker-Loud et al., PRD'08)

- Extrapolation from $m_{\pi} \simeq 300 \text{ MeV}$
- Hint on Universality

Fit to LQCD: Strategy

• Strategy: Fit LECs comparing $M_B^{(3)}(m_{\pi,i}, M_{K,i})$ in EOMS to $M_B^{LQCD}(i)$

- Masses in physical units obtained using the lattice spacing a
- Choose any point (*i*) where $m_{\pi,i} \lesssim 400 \text{ MeV}$
- ▶ Fit of *M*_{B0}, *b*₀, *b*_D, *b*_F, *M*_{D0}, *t*₀, *t*_D (7 LECs) to
 - * 24 PACS-CS points
 - * 16 LHPC points
- Fit of the octet and decuplet masses connected through octet-decuplet loops
- Two kind of fits: WITHOUT (χ^2) and WITH (χ^2) Expt. values
- Errors: Include statistical and propagated from a
 - Statistical errors uncorrelated
 - Errors from *a* are fully correlated: χ^2 with inverse of correlation matrix
- Other systematics
 - Finite volume corrections computed in the covariant framework

L.S. Geng, Ren, JMC, Weise'11

- Ignore discretization errors
- Phenomenological meson-baryon couplings used!

Fit to LQCD: Strategy

• Strategy: Fit LECs comparing $M_B^{(3)}(m_{\pi,i}, M_{K,i})$ in EOMS to $M_B^{LQCD}(i)$

- Masses in physical units obtained using the lattice spacing a
- Choose any point (*i*) where $m_{\pi,i} \lesssim 400$ MeV
- ▶ Fit of *M*_{B0}, *b*₀, *b*_D, *b*_F, *M*_{D0}, *t*₀, *t*_D (7 LECs) to
 - * 24 PACS-CS points
 - * 16 LHPC points
- Fit of the octet and decuplet masses connected through octet-decuplet loops
- Two kind of fits: WITHOUT (χ^2) and WITH ($\overline{\chi^2}$) Expt. values

• Errors: Include statistical and propagated from a

- Statistical errors uncorrelated
- Errors from *a* are fully correlated: χ^2 with inverse of correlation matrix

Other systematics

- Finite volume corrections computed in the covariant framework
 L.S. Geng, Ren, JMC, Weise'11
- Ignore discretization errors
- Phenomenological meson-baryon couplings used!

Fit to LQCD: Strategy

• Strategy: Fit LECs comparing $M_B^{(3)}(m_{\pi,i}, M_{K,i})$ in EOMS to $M_B^{LQCD}(i)$

- Masses in physical units obtained using the lattice spacing a
- Choose any point (*i*) where $m_{\pi,i} \lesssim 400$ MeV
- ▶ Fit of *M*_{B0}, *b*₀, *b*_D, *b*_F, *M*_{D0}, *t*₀, *t*_D (7 LECs) to
 - * 24 PACS-CS points
 - * 16 LHPC points
- Fit of the octet and decuplet masses connected through octet-decuplet loops
- Two kind of fits: WITHOUT (χ^2) and WITH (χ^2) Expt. values
- Errors: Include statistical and propagated from a
 - Statistical errors uncorrelated
 - Errors from *a* are fully correlated: χ^2 with inverse of correlation matrix

Other systematics

Finite volume corrections computed in the covariant framework

L.S. Geng, Ren, JMC, Weise'11

- Ignore discretization errors
- Phenomenological meson-baryon couplings used!

• Covariant B χ PT⁽³⁾ gives a good extrapolation of baryon masses $\chi^2 \sim 2$.

- Describes properly $m_{\phi} \lesssim 500 \text{ MeV}$
- Sizable **non-analytical** effect still below $m \le 156$ MeV!

Cov.

2.1

2.8

LQCD-B χ PT: LECs and sigma terms

• We compare the LECs obtained fitting Expt. OR LQCD results

	M _{B0}	b_0	M_{B0}^{eff}	b _D	b _F
Expt.	-	-	1.840(5)	0.199(4)	-0.530(2)
PACS-CS	0.756(32)	-0.978(38)	1.76(7)	0.190(24)	-0.519(19)
LHPC	0.780(31)	-1.044(45)	1.85(8)	0.236(24)	-0.523(21)

 M_B in [GeV] and *b*'s in [GeV⁻¹]

• LECs: experimental data and LQCD results are consistent!

Nucleon σ terms					
PACS-CS:	$\sigma_{\pi N}=$ 59(2)(6) MeV,	$\sigma_{sN} = -7(23)(60) \text{ MeV}$			
LHPC:	$\sigma_{\pi N} =$ 61(2)(6) MeV,	$\sigma_{sN} = -4(20)(60) \text{ MeV}$			

Systematic estimated with a subset of O(p⁴) NNLO diagrams

Comparison with other LQCD determinations

Collab.	$\sigma_{\pi N}$ [MeV]	σ_s [MeV]
BMW (Durr et al.'11)	$39(4)(^{+18}_{-7})$	$67(27)(^{+55}_{-47})$
UKQCD-QCDSF (Horsley et al.'12)	31(3)(4)	71(34)(59)
QCDSF* $N_f = 2 + 1$ (Bali <i>et al.</i> '12)	38(12)	12^{+23}_{-16}
QCDSF $N_f = 2$ (Bali <i>et al.</i> '12)	37(8)(6)	—
This work with decuplet (LHPC)	61(2)(6)	-4(20)(60)
This work without decuplet (LHPC)	44(2)(3)	10(20)(40)

- Current LQCD calcs prefer $\sigma_{\pi N} \simeq$ 30 MeV and $\sigma_{\pi N} \lesssim$ 100 MeV
- All the calculations need of some inter/extrapolator! None include the decuplet contributions!

The decuplet causes a systematic effect of $\sigma_{\pi N} \sim$ 15 MeV Pascalutsa *et al.*'06

• For a recent analysis at $\mathcal{O}(p^4)$ see M. Lutz talk

On the strangeness of the nucleon ...

On the strangeness content of the nucleon...

• In a $SU(3)_F$ context, $\sigma_{\pi N}$ and σ_s are closely interrelated

$$\sigma_{\pi N} = \frac{\sigma_0}{1 - y}$$

where y is the so-called "strangeness content" of the nucleon,

$$y = \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle} = \frac{2\hat{m}\sigma_s}{m_s\sigma_{\pi N}}$$

and σ_0 is related to the octet contribution to $\sigma_{\pi N}$

$$\sigma_0 = rac{\hat{m}}{2M_N} \langle N | ar{u} u + ar{d} d - 2ar{s} s | N
angle$$

• σ_0 can be obtained from the baryon spectrum. At LO in $SU(3)_F$ -breaking

$$\sigma_{\pi N} \simeq \frac{\hat{m}}{m_s - \hat{m}} \frac{(M_{\Xi} + M_{\Sigma} - 2M_N)}{1 - y} \simeq \frac{27}{1 - y} \text{ MeV}$$

- Higher order corrections has been calculated in χPT
 - Pioneering NLO calculation Gasser '83

$$\sigma_0 = 35(5) \text{ MeV}$$

► HB_{\chi}PT NNLO calculation Borasoy et *al.* '96

$$\sigma_0 = 36(7) \text{ MeV}$$

Strangeness puzzle: A $\sigma_{\pi N} \simeq 60$ MeV implies a $\sigma_s \simeq 300$ MeV 1/3 of the nucleon mass would originate from the strange sea quarks!

NLO corrections to σ_0 revisited

- Gasser calculation has a strong dependence on a cut-off
- HB is known to have a poor convergence in SU(3)_F
- NNLO calculations introduce 15 (unknown) LECs→Extra assumptions
- Decuplet contributions have to be included explicitly!

	$\mathcal{O}(p^2)$	Octet $\mathcal{O}(p^3)$		Octet+Decuplet $\mathcal{O}(p^3)$	
		$HB\chiPT$	Covariant	$HB\chiPT$	Covariant
σ_0 [MeV]	27	58(23)	46(8)	89(23)	58(8)

- Poor convergence shown in HB consistent with findings of Bernard et al.'93
- Decuplet contributions produce an increase of 10 MeV

 $\sigma_{\pi N} = 59(7)$ MeV leads to a negligible strangeness of the nucleon y = 0.02(13)(10)

Conclusions

• On the value of the sigma terms...

- ...πN scattering
- ...Analysis of LQCD results of the baryon masses
- ...Zweig Rule + SU(3)_F breaking of baryon masses

... lead to $\sigma_{\pi N} \simeq$ 60 MeV and to $\sigma_s \simeq$ 0

- Discrepancy with e.g. LQCDs which report $\sigma_{\pi N} \simeq$ 30 MeV and to $\sigma_s \simeq$ 0
 - Systematics effects in \(\chi PT?\)
 - Systematics effects in the LQCD effects?
 - Other systematics in the LQCD (FV?) Walker-Loud's talk
- Prospects on the πN scattering approach
 - Complementary to dispersive approaches
 - Fit data
 - Higher-orden calculation $\mathcal{O}(p^7/2)$ and $\mathcal{O}(p^4)$
- Prospects on the SU(3)_F
 - Marriage with Large N_c Walker-Loud's talk
 - ▶ O(p⁴) M. Lutz talk

Conclusions

• On the value of the sigma terms...

- ...πN scattering
- ...Analysis of LQCD results of the baryon masses
- ...Zweig Rule + SU(3)_F breaking of baryon masses

... lead to $\sigma_{\pi N} \simeq$ 60 MeV and to $\sigma_s \simeq$ 0

- Discrepancy with e.g. LQCDs which report $\sigma_{\pi N} \simeq$ 30 MeV and to $\sigma_s \simeq$ 0
 - Systematics effects in χ PT?
 - Systematics effects in the LQCD effects?
 - Other systematics in the LQCD (FV?) Walker-Loud's talk
- Prospects on the *πN* scattering approach
 - Complementary to dispersive approaches
 - Fit data
 - Higher-orden calculation $\mathcal{O}(p^7/2)$ and $\mathcal{O}(p^4)$
- Prospects on the SU(3)_F
 - Marriage with Large N_c Walker-Loud's talk
 - $\mathcal{O}(p^4)$ M. Lutz talk

Conclusions

• On the value of the sigma terms...

- ...πN scattering
- ...Analysis of LQCD results of the baryon masses
- ...Zweig Rule + SU(3)_F breaking of baryon masses

... lead to $\sigma_{\pi N} \simeq$ 60 MeV and to $\sigma_s \simeq$ 0

- Discrepancy with e.g. LQCDs which report $\sigma_{\pi N} \simeq$ 30 MeV and to $\sigma_s \simeq$ 0
 - Systematics effects in χ PT?
 - Systematics effects in the LQCD effects?
 - Other systematics in the LQCD (FV?) Walker-Loud's talk
- Prospects on the *πN* scattering approach
 - Complementary to dispersive approaches
 - Fit data
 - Higher-orden calculation $\mathcal{O}(p^7/2)$ and $\mathcal{O}(p^4)$
- Prospects on the SU(3)_F
 - Marriage with Large N_c Walker-Loud's talk
 - O(p⁴) M. Lutz talk